Hydrogen sulfide: The Silent Killer on a fish farm

Elevated levels of hydrogen sulfide (H₂S) have lethal effects on fish. The presence of oxygen will work against the production of H₂S, but it is a very slow process that cannot protect the fish in situations with sudden spikes of H₂S. Anaerobic environments with H₂S can form anywhere on a fish farm, particularly in biofilters and stagnant piping systems.

\[
\text{SO}_4^{2-} + 2\text{C organic} + 2\text{H}_2\text{O} \xrightarrow{\text{Volatil fatty acids limiting}} \text{Sulfate-reducing Bacteria} \xrightarrow{\text{Anaerobic}} \text{H}_2\text{S} + 2\text{HCO}_3^{-}
\]

The concentration of SO₄²⁻ is significantly higher in seawater (2700 mg/L) compared to freshwater (5-50 mg/L). Consequently, a fish farm needs to operate below 5 ppt in salinity before SO₄²⁻ becomes limiting for H₂S-formation.

Sulfate reducing bacteria competes with nitrate reducing bacteria for volatile fatty acids. As a result, if the fish farm operates at a higher nitrate level, then nitrate reducing bacteria can outcompete the sulfate reducing bacteria for limiting volatile fatty acids.

How does it kill? Are there any symptoms?

Fish are very sensitive to H₂S. Levels of even 2 µg/L in freshwater and 5 µg/L in salt water can stress them, and concentrations above 25 µg/L can be lethal.

The symptoms of a H₂S-uptake are reduced appetite, together with the fish beginning to swim side-ways. Uptake cannot be detected on gills or other organs.

What happens to H₂S around the RAS?

The effects of H₂S are most dangerous at low pH-values. Conversely, it becomes less dangerous at higher pH-values, where it exists as HS⁻. H₂S-gas binds into the water to form HS⁻. At pH 7.5, around 75% is bound, while only 50 % is bound at pH 7.0.

Luckily, there is a constant removal of H₂S and HS⁻ across fish farms. HS⁻ binds with metals to form metal sulfides, H₂S can be degassed, while ozone, oxygen, and nitrate all oxidize H₂S to less toxic forms.

How does Blue Unit manage H₂S?

For fish farms, it should be the goal not to have any H₂S accumulating at all. Blue Unit’s Lab Station measures total hydrogen sulfide 6 times a day across 12 locations on a RAS, creating up to 72 data points daily. Blue Unit helps farms to manage their buffer capacity in the water, which means a smaller pH drop across the fish tank and a generally more stable water quality, while binding more H₂S to HS⁻. Additionally, Blue Unit helps customers manage turbidity levels. This minimizes the creation of anaerobic zones and helps to maintain healthy, well oxygenated biofilters.